Skip to content

Quick Start Guide

Get started with DeepSeek AI in minutes. This guide will walk you through setting up your account, making your first API call, and exploring key features.

Prerequisites

  • A valid email address for account registration
  • Basic programming knowledge (Python, JavaScript, or cURL)
  • Internet connection for API access

Step 1: Create Your Account

Sign Up

  1. Visit DeepSeek Platform
  2. Click "Sign Up" and provide your email address
  3. Verify your email address
  4. Complete your profile setup

Get Your API Key

  1. Log in to your DeepSeek dashboard
  2. Navigate to "API Keys" section
  3. Click "Create New API Key"
  4. Copy and securely store your API key

⚠️ Important: Keep your API key secure and never share it publicly.

Step 2: Install SDK

Choose your preferred programming language:

Python

bash
pip install deepseek-sdk

JavaScript/Node.js

bash
npm install deepseek-sdk

Alternative: Direct HTTP Requests

You can also use cURL or any HTTP client to make direct API requests.

Step 3: Your First API Call

Python Example

python
from deepseek import DeepSeekClient

# Initialize the client
client = DeepSeekClient(api_key="your-api-key-here")

# Make your first chat completion request
response = client.chat.completions.create(
    model="deepseek-chat",
    messages=[
        {"role": "user", "content": "Hello! Can you explain what DeepSeek is?"}
    ]
)

print(response.choices[0].message.content)

JavaScript Example

javascript
import { DeepSeekClient } from 'deepseek-sdk';

// Initialize the client
const client = new DeepSeekClient({
  apiKey: 'your-api-key-here'
});

// Make your first chat completion request
async function firstCall() {
  const response = await client.chat.completions.create({
    model: 'deepseek-chat',
    messages: [
      { role: 'user', content: 'Hello! Can you explain what DeepSeek is?' }
    ]
  });
  
  console.log(response.choices[0].message.content);
}

firstCall();

cURL Example

bash
curl -X POST "https://api.deepseek.com/v1/chat/completions" \
  -H "Authorization: Bearer your-api-key-here" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "deepseek-chat",
    "messages": [
      {"role": "user", "content": "Hello! Can you explain what DeepSeek is?"}
    ]
  }'

Step 4: Explore Core Features

Chat Completions

Create conversational AI experiences:

python
# Multi-turn conversation
messages = [
    {"role": "system", "content": "You are a helpful AI assistant."},
    {"role": "user", "content": "What's the weather like today?"},
    {"role": "assistant", "content": "I don't have access to real-time weather data. You can check a weather app or website for current conditions in your area."},
    {"role": "user", "content": "How can I check the weather programmatically?"}
]

response = client.chat.completions.create(
    model="deepseek-chat",
    messages=messages,
    temperature=0.7,
    max_tokens=500
)

print(response.choices[0].message.content)

Streaming Responses

Get real-time streaming responses:

python
# Streaming chat completion
stream = client.chat.completions.create(
    model="deepseek-chat",
    messages=[
        {"role": "user", "content": "Write a short story about AI"}
    ],
    stream=True
)

for chunk in stream:
    if chunk.choices[0].delta.content is not None:
        print(chunk.choices[0].delta.content, end="")

Code Generation

Generate and analyze code:

python
# Code generation
code_response = client.chat.completions.create(
    model="deepseek-coder",
    messages=[
        {"role": "user", "content": "Create a Python function to calculate the Fibonacci sequence"}
    ]
)

print(code_response.choices[0].message.content)

Function Calling

Use function calling for structured interactions:

python
import json

# Define a function
functions = [
    {
        "name": "get_weather",
        "description": "Get current weather information for a location",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The city and state, e.g. San Francisco, CA"
                },
                "unit": {
                    "type": "string",
                    "enum": ["celsius", "fahrenheit"],
                    "description": "Temperature unit"
                }
            },
            "required": ["location"]
        }
    }
]

# Function calling request
response = client.chat.completions.create(
    model="deepseek-chat",
    messages=[
        {"role": "user", "content": "What's the weather like in New York?"}
    ],
    functions=functions,
    function_call="auto"
)

# Check if function was called
if response.choices[0].message.function_call:
    function_call = response.choices[0].message.function_call
    print(f"Function called: {function_call.name}")
    print(f"Arguments: {function_call.arguments}")

Step 5: Advanced Configuration

Setting Parameters

Customize AI behavior with various parameters:

python
response = client.chat.completions.create(
    model="deepseek-chat",
    messages=[
        {"role": "user", "content": "Explain quantum computing"}
    ],
    temperature=0.3,        # Lower temperature for more focused responses
    max_tokens=1000,        # Maximum response length
    top_p=0.9,             # Nucleus sampling parameter
    frequency_penalty=0.1,  # Reduce repetition
    presence_penalty=0.1    # Encourage topic diversity
)

Error Handling

Implement proper error handling:

python
from deepseek import DeepSeekError, RateLimitError, AuthenticationError

try:
    response = client.chat.completions.create(
        model="deepseek-chat",
        messages=[{"role": "user", "content": "Hello!"}]
    )
    print(response.choices[0].message.content)
    
except AuthenticationError:
    print("Invalid API key")
except RateLimitError:
    print("Rate limit exceeded")
except DeepSeekError as e:
    print(f"DeepSeek API error: {e}")
except Exception as e:
    print(f"Unexpected error: {e}")

Async Operations (Python)

Use async/await for better performance:

python
import asyncio
from deepseek import AsyncDeepSeekClient

async def async_example():
    client = AsyncDeepSeekClient(api_key="your-api-key-here")
    
    response = await client.chat.completions.create(
        model="deepseek-chat",
        messages=[{"role": "user", "content": "Hello async world!"}]
    )
    
    print(response.choices[0].message.content)
    await client.close()

# Run async function
asyncio.run(async_example())

Step 6: Best Practices

API Key Security

python
import os
from deepseek import DeepSeekClient

# Use environment variables for API keys
api_key = os.getenv("DEEPSEEK_API_KEY")
client = DeepSeekClient(api_key=api_key)

Rate Limiting

python
import time
from deepseek import RateLimitError

def make_request_with_retry(client, messages, max_retries=3):
    for attempt in range(max_retries):
        try:
            return client.chat.completions.create(
                model="deepseek-chat",
                messages=messages
            )
        except RateLimitError:
            if attempt < max_retries - 1:
                wait_time = 2 ** attempt  # Exponential backoff
                time.sleep(wait_time)
            else:
                raise

Prompt Engineering

python
# Use clear, specific prompts
def create_effective_prompt(task, context="", examples=""):
    prompt = f"""
Task: {task}

Context: {context}

Examples: {examples}

Please provide a detailed and accurate response.
"""
    return prompt.strip()

# Example usage
prompt = create_effective_prompt(
    task="Summarize the key points of quantum computing",
    context="For a general audience with basic science knowledge",
    examples="Focus on practical applications and benefits"
)

response = client.chat.completions.create(
    model="deepseek-chat",
    messages=[{"role": "user", "content": prompt}]
)

Common Use Cases

1. Chatbot Integration

python
class DeepSeekChatbot:
    def __init__(self, api_key):
        self.client = DeepSeekClient(api_key=api_key)
        self.conversation_history = []
    
    def chat(self, user_message):
        self.conversation_history.append({"role": "user", "content": user_message})
        
        response = self.client.chat.completions.create(
            model="deepseek-chat",
            messages=self.conversation_history
        )
        
        assistant_message = response.choices[0].message.content
        self.conversation_history.append({"role": "assistant", "content": assistant_message})
        
        return assistant_message

# Usage
chatbot = DeepSeekChatbot("your-api-key")
response = chatbot.chat("Hello, how are you?")
print(response)

2. Content Generation

python
def generate_blog_post(topic, length="medium"):
    length_instructions = {
        "short": "Write a concise 300-word blog post",
        "medium": "Write a comprehensive 800-word blog post",
        "long": "Write a detailed 1500-word blog post"
    }
    
    prompt = f"{length_instructions[length]} about {topic}. Include an engaging introduction, main points with examples, and a compelling conclusion."
    
    response = client.chat.completions.create(
        model="deepseek-chat",
        messages=[{"role": "user", "content": prompt}],
        temperature=0.7
    )
    
    return response.choices[0].message.content

# Generate content
blog_post = generate_blog_post("The Future of Artificial Intelligence", "medium")
print(blog_post)

3. Code Analysis and Review

python
def analyze_code(code, language="python"):
    prompt = f"""
Please analyze the following {language} code and provide:
1. Code quality assessment
2. Potential bugs or issues
3. Performance optimization suggestions
4. Best practice recommendations

Code:
```{language}
{code}

"""

response = client.chat.completions.create(
    model="deepseek-coder",
    messages=[{"role": "user", "content": prompt}]
)

return response.choices[0].message.content

Analyze code

code_to_analyze = """ def fibonacci(n): if n <= 1: return n return fibonacci(n-1) + fibonacci(n-2) """

analysis = analyze_code(code_to_analyze) print(analysis)


## Next Steps

### Explore Advanced Features
- [Function Calling Guide](/en/function-calling-guide)
- [Streaming and Real-time Applications](/en/guides/streaming)
- [User Guides](/en/guides/)
- [Multimodal AI Capabilities](/en/guides/multimodal)

### Integration Guides
- [Getting Started](/en/getting-started)
- [User Guides](/en/guides/)
- [Enterprise Solutions](/en/enterprise/)
- [API Reference](/en/api-reference)

### Resources
- [API Reference](/en/api-reference)
- [SDK Documentation](/en/sdks)

### Support
- [Technical Support](/en/support)
- [FAQ](/en/faq)
- [Contact Us](/en/contact)

---

*You're now ready to build amazing AI-powered applications with DeepSeek! Start with simple examples and gradually explore more advanced features as you become comfortable with the platform.*

基于 DeepSeek AI 大模型技术