Getting Started with DeepSeek AI
Welcome to DeepSeek AI! This comprehensive guide will help you understand our platform, set up your development environment, and start building intelligent applications with our advanced AI models.
What is DeepSeek AI?
DeepSeek AI is a cutting-edge artificial intelligence platform that provides state-of-the-art language models, multimodal AI capabilities, and specialized tools for various domains including coding, research, and creative applications.
Key Features
- Advanced Language Models: Powerful conversational AI with deep reasoning capabilities
- Code Intelligence: Specialized models for code generation, analysis, and debugging
- Multimodal AI: Support for text, images, audio, and video processing
- Research Tools: AI-powered research assistance and scientific discovery
- Real-time Streaming: Low-latency responses for interactive applications
- Enterprise-Ready: Scalable infrastructure with security and compliance features
Platform Overview
Core Models
DeepSeek Chat
Our flagship conversational AI model designed for general-purpose interactions:
- Natural language understanding and generation
- Multi-turn conversations with context awareness
- Reasoning and problem-solving capabilities
- Support for multiple languages
DeepSeek Coder
Specialized model for programming and software development:
- Code generation in 100+ programming languages
- Code explanation and documentation
- Bug detection and fixing
- Code optimization suggestions
- Architecture design assistance
DeepSeek Research
AI assistant for research and academic work:
- Literature review and synthesis
- Hypothesis generation
- Data analysis assistance
- Scientific writing support
- Research methodology guidance
DeepSeek Vision
Multimodal AI for visual understanding:
- Image analysis and description
- Visual question answering
- Object detection and recognition
- Scene understanding
- Visual content generation
API Architecture
DeepSeek AI provides a RESTful API that follows OpenAI-compatible standards, making it easy to integrate with existing applications and tools.
https://api.deepseek.com/v1/
├── chat/completions # Chat and text generation
├── completions # Text completion
├── embeddings # Text embeddings
├── images # Image processing
├── audio # Audio processing
├── files # File management
└── models # Model information
Account Setup
1. Create Your Account
- Visit the Platform: Go to platform.deepseek.com
- Sign Up: Click "Sign Up" and provide your email address
- Verify Email: Check your email and click the verification link
- Complete Profile: Fill in your profile information and preferences
2. Choose Your Plan
DeepSeek offers flexible pricing plans to suit different needs:
- Free Tier: Perfect for getting started and small projects
- Developer Plan: For individual developers and small teams
- Professional Plan: For growing businesses and advanced features
- Enterprise Plan: For large organizations with custom requirements
3. API Key Management
- Access Dashboard: Log in to your DeepSeek dashboard
- Navigate to API Keys: Go to the "API Keys" section
- Create New Key: Click "Create New API Key"
- Set Permissions: Configure key permissions and usage limits
- Secure Storage: Copy and securely store your API key
⚠️ Security Best Practices:
- Never share your API key publicly
- Use environment variables to store keys
- Rotate keys regularly
- Set appropriate usage limits
- Monitor key usage in the dashboard
Development Environment Setup
Prerequisites
Before you begin, ensure you have:
- A programming environment (Python 3.7+, Node.js 14+, or similar)
- Package manager (pip, npm, yarn, etc.)
- Text editor or IDE
- Terminal or command line access
SDK Installation
Choose your preferred programming language:
Python
# Install the DeepSeek Python SDK
pip install deepseek-sdk
# For async support
pip install deepseek-sdk[async]
# For all optional dependencies
pip install deepseek-sdk[all]
JavaScript/TypeScript
# Using npm
npm install deepseek-sdk
# Using yarn
yarn add deepseek-sdk
# For TypeScript projects
npm install @types/deepseek-sdk
Go
go get github.com/deepseek/deepseek-go
Java
<!-- Add to your pom.xml -->
<dependency>
<groupId>com.deepseek</groupId>
<artifactId>deepseek-java</artifactId>
<version>1.0.0</version>
</dependency>
Environment Configuration
Create a .env
file in your project root:
# .env file
DEEPSEEK_API_KEY=your_api_key_here
DEEPSEEK_BASE_URL=https://api.deepseek.com/v1
DEEPSEEK_TIMEOUT=30
Your First Application
Let's build a simple AI-powered application step by step.
Basic Chat Application
Python Implementation
import os
from deepseek import DeepSeekClient
# Initialize the client
client = DeepSeekClient(
api_key=os.getenv("DEEPSEEK_API_KEY")
)
def simple_chat():
print("DeepSeek AI Chat (type 'quit' to exit)")
while True:
user_input = input("\nYou: ")
if user_input.lower() == 'quit':
break
try:
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "user", "content": user_input}
],
temperature=0.7,
max_tokens=500
)
ai_response = response.choices[0].message.content
print(f"AI: {ai_response}")
except Exception as e:
print(f"Error: {e}")
if __name__ == "__main__":
simple_chat()
JavaScript Implementation
import { DeepSeekClient } from 'deepseek-sdk';
import readline from 'readline';
const client = new DeepSeekClient({
apiKey: process.env.DEEPSEEK_API_KEY
});
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});
async function simpleChat() {
console.log("DeepSeek AI Chat (type 'quit' to exit)");
const askQuestion = () => {
rl.question('\nYou: ', async (input) => {
if (input.toLowerCase() === 'quit') {
rl.close();
return;
}
try {
const response = await client.chat.completions.create({
model: 'deepseek-chat',
messages: [
{ role: 'user', content: input }
],
temperature: 0.7,
max_tokens: 500
});
console.log(`AI: ${response.choices[0].message.content}`);
askQuestion();
} catch (error) {
console.error(`Error: ${error.message}`);
askQuestion();
}
});
};
askQuestion();
}
simpleChat();
Code Assistant Application
from deepseek import DeepSeekClient
import os
class CodeAssistant:
def __init__(self):
self.client = DeepSeekClient(
api_key=os.getenv("DEEPSEEK_API_KEY")
)
def generate_code(self, description, language="python"):
prompt = f"""
Generate {language} code for the following requirement:
{description}
Please provide clean, well-commented code with proper error handling.
"""
response = self.client.chat.completions.create(
model="deepseek-coder",
messages=[{"role": "user", "content": prompt}],
temperature=0.3
)
return response.choices[0].message.content
def explain_code(self, code, language="python"):
prompt = f"""
Explain the following {language} code:
```{language}
{code}
```
Please provide a clear explanation of what this code does, how it works, and any important concepts.
"""
response = self.client.chat.completions.create(
model="deepseek-coder",
messages=[{"role": "user", "content": prompt}],
temperature=0.3
)
return response.choices[0].message.content
def review_code(self, code, language="python"):
prompt = f"""
Review the following {language} code and provide feedback:
```{language}
{code}
```
Please analyze:
1. Code quality and style
2. Potential bugs or issues
3. Performance considerations
4. Best practice recommendations
5. Security concerns (if any)
"""
response = self.client.chat.completions.create(
model="deepseek-coder",
messages=[{"role": "user", "content": prompt}],
temperature=0.3
)
return response.choices[0].message.content
# Usage example
assistant = CodeAssistant()
# Generate code
code = assistant.generate_code(
"Create a function to calculate the factorial of a number using recursion"
)
print("Generated Code:")
print(code)
# Explain code
explanation = assistant.explain_code(code)
print("\nCode Explanation:")
print(explanation)
# Review code
review = assistant.review_code(code)
print("\nCode Review:")
print(review)
Advanced Features
Streaming Responses
For real-time applications, use streaming to get responses as they're generated:
def streaming_chat(user_message):
stream = client.chat.completions.create(
model="deepseek-chat",
messages=[{"role": "user", "content": user_message}],
stream=True
)
print("AI: ", end="", flush=True)
for chunk in stream:
if chunk.choices[0].delta.content is not None:
print(chunk.choices[0].delta.content, end="", flush=True)
print() # New line after response
# Usage
streaming_chat("Tell me a story about artificial intelligence")
Function Calling
Enable your AI to use external tools and APIs:
import json
# Define available functions
functions = [
{
"name": "get_weather",
"description": "Get current weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "City name"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
},
{
"name": "calculate",
"description": "Perform mathematical calculations",
"parameters": {
"type": "object",
"properties": {
"expression": {
"type": "string",
"description": "Mathematical expression to evaluate"
}
},
"required": ["expression"]
}
}
]
def handle_function_call(function_name, arguments):
"""Handle function calls from the AI"""
if function_name == "get_weather":
# Simulate weather API call
location = arguments.get("location")
return f"The weather in {location} is sunny, 22°C"
elif function_name == "calculate":
# Safely evaluate mathematical expressions
expression = arguments.get("expression")
try:
result = eval(expression) # Note: Use a safer eval in production
return f"Result: {result}"
except:
return "Error: Invalid mathematical expression"
return "Function not found"
def chat_with_functions(user_message):
response = client.chat.completions.create(
model="deepseek-chat",
messages=[{"role": "user", "content": user_message}],
functions=functions,
function_call="auto"
)
message = response.choices[0].message
if message.function_call:
# AI wants to call a function
function_name = message.function_call.name
arguments = json.loads(message.function_call.arguments)
# Execute the function
function_result = handle_function_call(function_name, arguments)
# Send the result back to the AI
follow_up = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "user", "content": user_message},
{"role": "assistant", "content": None, "function_call": message.function_call},
{"role": "function", "name": function_name, "content": function_result}
]
)
return follow_up.choices[0].message.content
else:
return message.content
# Usage
response = chat_with_functions("What's the weather like in Tokyo and what's 15 * 23?")
print(response)
Multimodal Capabilities
Work with images and other media:
import base64
def analyze_image(image_path, question="What do you see in this image?"):
# Read and encode image
with open(image_path, "rb") as image_file:
image_data = base64.b64encode(image_file.read()).decode('utf-8')
response = client.chat.completions.create(
model="deepseek-vision",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": question},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_data}"
}
}
]
}
]
)
return response.choices[0].message.content
# Usage
description = analyze_image("path/to/your/image.jpg", "Describe this image in detail")
print(description)
Best Practices
Error Handling
Implement robust error handling for production applications:
from deepseek import (
DeepSeekError,
AuthenticationError,
RateLimitError,
APIError,
TimeoutError
)
import time
import random
def robust_api_call(client, messages, max_retries=3):
"""Make API call with retry logic and proper error handling"""
for attempt in range(max_retries):
try:
response = client.chat.completions.create(
model="deepseek-chat",
messages=messages,
timeout=30
)
return response
except AuthenticationError:
print("Authentication failed. Check your API key.")
raise
except RateLimitError as e:
if attempt < max_retries - 1:
# Exponential backoff with jitter
wait_time = (2 ** attempt) + random.uniform(0, 1)
print(f"Rate limit hit. Waiting {wait_time:.2f} seconds...")
time.sleep(wait_time)
else:
print("Rate limit exceeded. Please try again later.")
raise
except TimeoutError:
if attempt < max_retries - 1:
print(f"Request timed out. Retrying... (attempt {attempt + 1})")
else:
print("Request timed out after multiple attempts.")
raise
except APIError as e:
print(f"API error: {e}")
if attempt < max_retries - 1 and e.status_code >= 500:
# Retry on server errors
time.sleep(2 ** attempt)
else:
raise
except DeepSeekError as e:
print(f"DeepSeek error: {e}")
raise
except Exception as e:
print(f"Unexpected error: {e}")
raise
raise Exception("Max retries exceeded")
Performance Optimization
import asyncio
from deepseek import AsyncDeepSeekClient
class OptimizedAIService:
def __init__(self, api_key):
self.client = AsyncDeepSeekClient(api_key=api_key)
self.cache = {}
async def cached_completion(self, prompt, cache_key=None):
"""Use caching for repeated requests"""
if cache_key and cache_key in self.cache:
return self.cache[cache_key]
response = await self.client.chat.completions.create(
model="deepseek-chat",
messages=[{"role": "user", "content": prompt}]
)
result = response.choices[0].message.content
if cache_key:
self.cache[cache_key] = result
return result
async def batch_completions(self, prompts):
"""Process multiple prompts concurrently"""
tasks = []
for prompt in prompts:
task = self.client.chat.completions.create(
model="deepseek-chat",
messages=[{"role": "user", "content": prompt}]
)
tasks.append(task)
responses = await asyncio.gather(*tasks)
return [r.choices[0].message.content for r in responses]
async def close(self):
await self.client.close()
# Usage
async def main():
service = OptimizedAIService("your-api-key")
# Batch processing
prompts = [
"Explain machine learning",
"What is quantum computing?",
"Describe blockchain technology"
]
results = await service.batch_completions(prompts)
for prompt, result in zip(prompts, results):
print(f"Q: {prompt}")
print(f"A: {result}\n")
await service.close()
# Run async function
asyncio.run(main())
Security Considerations
import os
import hashlib
import hmac
from datetime import datetime, timedelta
class SecureAIClient:
def __init__(self):
# Use environment variables for sensitive data
self.api_key = os.getenv("DEEPSEEK_API_KEY")
self.webhook_secret = os.getenv("WEBHOOK_SECRET")
if not self.api_key:
raise ValueError("DEEPSEEK_API_KEY environment variable is required")
self.client = DeepSeekClient(api_key=self.api_key)
def sanitize_input(self, user_input):
"""Sanitize user input to prevent injection attacks"""
# Remove potentially dangerous characters
dangerous_chars = ['<', '>', '"', "'", '&', '\x00']
for char in dangerous_chars:
user_input = user_input.replace(char, '')
# Limit input length
max_length = 10000
if len(user_input) > max_length:
user_input = user_input[:max_length]
return user_input.strip()
def verify_webhook(self, payload, signature):
"""Verify webhook signature for security"""
expected_signature = hmac.new(
self.webhook_secret.encode(),
payload.encode(),
hashlib.sha256
).hexdigest()
return hmac.compare_digest(signature, expected_signature)
def rate_limit_check(self, user_id, max_requests=100, window_minutes=60):
"""Implement client-side rate limiting"""
# This is a simple example - use Redis or database in production
current_time = datetime.now()
window_start = current_time - timedelta(minutes=window_minutes)
# Check request count for user in time window
# Implementation depends on your storage solution
return True # Placeholder
async def safe_completion(self, user_input, user_id=None):
"""Make a safe API call with all security measures"""
# Rate limiting
if user_id and not self.rate_limit_check(user_id):
raise Exception("Rate limit exceeded")
# Input sanitization
clean_input = self.sanitize_input(user_input)
# Content filtering (implement based on your needs)
if self.contains_inappropriate_content(clean_input):
raise Exception("Inappropriate content detected")
# Make the API call
response = await self.client.chat.completions.create(
model="deepseek-chat",
messages=[{"role": "user", "content": clean_input}],
temperature=0.7
)
return response.choices[0].message.content
def contains_inappropriate_content(self, text):
"""Check for inappropriate content"""
# Implement your content filtering logic
inappropriate_keywords = ['spam', 'harmful', 'illegal']
text_lower = text.lower()
return any(keyword in text_lower for keyword in inappropriate_keywords)
Testing Your Integration
Unit Tests
import unittest
from unittest.mock import Mock, patch
from your_app import AIService
class TestAIService(unittest.TestCase):
def setUp(self):
self.ai_service = AIService("test-api-key")
@patch('deepseek.DeepSeekClient')
def test_chat_completion(self, mock_client):
# Mock the API response
mock_response = Mock()
mock_response.choices[0].message.content = "Test response"
mock_client.return_value.chat.completions.create.return_value = mock_response
# Test the service
result = self.ai_service.chat("Hello")
# Assertions
self.assertEqual(result, "Test response")
mock_client.return_value.chat.completions.create.assert_called_once()
def test_input_sanitization(self):
dangerous_input = "<script>alert('xss')</script>Hello"
clean_input = self.ai_service.sanitize_input(dangerous_input)
self.assertNotIn("<script>", clean_input)
self.assertNotIn("</script>", clean_input)
if __name__ == '__main__':
unittest.main()
Integration Tests
import pytest
from deepseek import DeepSeekClient
import os
@pytest.fixture
def client():
api_key = os.getenv("DEEPSEEK_TEST_API_KEY")
if not api_key:
pytest.skip("Test API key not provided")
return DeepSeekClient(api_key=api_key)
def test_basic_chat_completion(client):
response = client.chat.completions.create(
model="deepseek-chat",
messages=[{"role": "user", "content": "Say hello"}]
)
assert response.choices[0].message.content
assert len(response.choices[0].message.content) > 0
def test_streaming_response(client):
stream = client.chat.completions.create(
model="deepseek-chat",
messages=[{"role": "user", "content": "Count to 5"}],
stream=True
)
chunks = list(stream)
assert len(chunks) > 0
def test_function_calling(client):
functions = [{
"name": "test_function",
"description": "A test function",
"parameters": {
"type": "object",
"properties": {
"param": {"type": "string"}
}
}
}]
response = client.chat.completions.create(
model="deepseek-chat",
messages=[{"role": "user", "content": "Call the test function"}],
functions=functions
)
# Check if function was called or regular response was given
assert response.choices[0].message
Deployment Considerations
Environment Setup
# docker-compose.yml
version: '3.8'
services:
ai-app:
build: .
environment:
- DEEPSEEK_API_KEY=${DEEPSEEK_API_KEY}
- ENVIRONMENT=production
- LOG_LEVEL=info
ports:
- "8000:8000"
restart: unless-stopped
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8000/health"]
interval: 30s
timeout: 10s
retries: 3
# Dockerfile
FROM python:3.9-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
EXPOSE 8000
CMD ["python", "app.py"]
Monitoring and Logging
import logging
import time
from functools import wraps
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def monitor_api_calls(func):
"""Decorator to monitor API calls"""
@wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
try:
result = func(*args, **kwargs)
duration = time.time() - start_time
logger.info(f"API call successful - Duration: {duration:.2f}s")
return result
except Exception as e:
duration = time.time() - start_time
logger.error(f"API call failed - Duration: {duration:.2f}s - Error: {e}")
raise
return wrapper
class MonitoredAIService:
def __init__(self, api_key):
self.client = DeepSeekClient(api_key=api_key)
@monitor_api_calls
def chat_completion(self, messages):
return self.client.chat.completions.create(
model="deepseek-chat",
messages=messages
)
Next Steps
Congratulations! You now have a solid foundation for working with DeepSeek AI. Here are some recommended next steps:
Explore Advanced Features
- Function Calling Guide - Learn to integrate external tools
- Multimodal AI - Work with images, audio, and video
- User Guides - Customize models for your specific use case
- API Reference - Build semantic search and recommendation systems
Integration Paths
- User Guides - Add AI to web applications
- SDKs - Build AI-powered mobile apps
- API Reference - Manage API access and security
Get Support
- API Reference - Complete API documentation
- SDK Documentation - Language-specific guides
- Technical Support - Get help from our team
Ready to build the future with AI? Start experimenting with our examples and join thousands of developers already building amazing applications with DeepSeek AI!